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A note on the breakdown of continuity in the motion 
of a compressible fluid 

By D. C. PACK 
Department of Mathematics, The Royal College of Science and Technology, Glasgow 

(Received 1 August 1959) 

By a consideration of the relationships holding along the characteristics in an 
unsteady motion involving plane, axially or spherically symmetrical flow of 
compressibleinviscid fluid, it  is shown that the existence of a region of compression 
anywhere in the flow must lead eventually to the breakdown of continuity. The 
paper generalizes and unites previous work on this topic, and discusses some 
recent numerical calculations in which the expected discontinuity was not found. 

1. Introduction 
The fact that a wave of compression, in one-dimensional unsteady flow of an 

inviscid non-heat-conducting gas always leads eventually to a breakdown in the 
continuity of the flow has been known for a century. Challis (1848) observed that 
Poisson’s simple-wave solution (1808) of the differential equation of flow in an 
isothermal gas could not always be solved uniquely for the velocity, and it was 
Stokes (1848) who first attempted to insert a discontinuity of velocity into the 
flow in order to continue it beyond the point in (x, t)-space at which the mathe- 
matical solution broke down. Although it was many years before the exact nature 
of these discontinuities, or ‘shock waves’, was correctly worked out, it  is now well 
understood that in the simple wave resulting from the positive acceleration of a 
piston into a (one-dimensional) gas at  rest, a shock wave must occur (see, for 
example, Courant & Friedrichs 1948). It is not, however, immediately obvious 
that such a breakdown of continuity in a compressive wave must necessarily 
occur when the motion has cylindrical or spherical symmetry. In  these cases, the 
rapid increase in the volume occupied by a gas during its expansion may cause the 
pressure gradients in the gas to fall in the initial stages. A calculation performed 
by Unwin (1941) on the expansion of a spherical mass of gas released suddenly 
from a state of rest did not reveal the occurrence of a discontinuity up to the 
t-coordinate (t being the time) at  which he ended his computations. In  a recent 
paper Fox & Ralston (1957) have reworked Unwin’s example, and while dis- 
agreeing with his numerical results, have concluded, even more strongly than he 
did, that no shock wave will result from a continuation of their calculations. 
Roberts (1957), calculating the development of a stronger initial distribution of 
pressure, also reached these conclusions. 

In  contrast with these results, it was shown by Hantzsche & Wendt (1940), who 
examined the development of a wave moving irrotationally with a region of com- 
pression at its head into gas at rest, that ultimately the continuity would break 
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down. Kuo (1947) has discussed a similar type of flow and has also found some 
sufficient conditions for breakdown in the general case by a consideration of the 
flow in the hodograph plane. 

Furthermore (although these authors seem not to have been aware of it) Burton 
showed, as long ago as 1893, that the continuity of an expanding spherical wave 
will eventually break down if there is a t  all times a region of compression, no 
matter how weak, somewhere within the wave. Burton obtained his results by 
intuitive arguments based upon inequalities. 

In  this note the problem is reconsidered in terms of the theory of characteristics, 
which enables Burton’s arguments to be expressed in a more precise form and at  
the same time generalizes the results of Hantzsche & Wendt. 

2. Equations of motion 

given by the equations 
Let us consider the characteristic surfaces of a gas motion, these surfaces being 

dr .. . 
- = U f C ,  
dt 

where u is the particle velocity and c the local speed of sound a t  a point ( r ,  t ) ,  
r being distance from the centre, from the axis or from a fixed plane according as 
the motion is radially or cylindrically symmetrical or plane (one-dimensional). 
The conditions of compatibility, which have to be satisfied on these surfaces are, - 

2ac 1 ax 
auk- +-dt--@-ddt = 0, 

in differential form, 

7-1- r y ar 

where y is the (supposed constant) ratio of specific heats; E = 2, 1 or 0 according 
as we are considering radially or cylindrically symmetrical or plane flow; Z is a 
function of the specific entropy X defined by C(8)  = {2y/(y-  1))logc- logp, 
p being the pressure; and where the alternative signs correspond respectively to 
those in the previous equation of the characteristics, We shall also suppose that 
the two families of characteristics in the ( r ,  t)-plane are respectively designated in 
some way as the curves a = const. and ,8 = const. We then consider two points 
P and Q which are allowed to vary in such a way that, in (a,P)-space, their 
co-ordinates are (a1, ,!?) and (a2, p), where p is a variable and a,, a2 are arbitrary 
constants (see figure 1). 

Suppose that Pis at radial distance r and Q at distance r + Ar. We shall investi- 
gate the change in Ar as the time increases and P ,  Q move along their a-charac- 
teristics. If at  some time AT becomes zero, the a-characteristics will intersect, an 
indication of the breakdown of the continuity of the motion. 

If such a breakdown occurs in the early stages of the motion, there is nothing to 
prove. The important question is whether, if no discontinuity occurs before the 
disturbances become of small magnitude, the motion can avoid indefinitely the 
onset of such a discontinuity. We suppose, therefore, that P and Q lie on a 
/3-characteristic which is sufficiently far from the origin for Ar to be small com- 
pared with r .  Also, we suppose that the disturbances have decayed to such an 
extent that u is small compared with c ;  on the other hand, Au and Ac (the symbol 
A represents the increment in the value of the following quantity from the point P 
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to the point Q), while small, may be of the same order of magnitude as u. Since 
both P and Q move on a-characteristics, it follows that 

When the disturbances are weak, C ( S )  is of the order of magnitude of ( u / c ) ~  
at moat, the order of magnitude obtained when there is already a weak shock-wave 
ahead of the region under consideration; in homentropic flow, C(X) is constant. 

19 = const. 

r 

t 
FIGURE 1. 

Hence, when terms of second and higher orders of smallness are neglected in the 
above equation, we obtain 

where co is the speed of sound in the gas at rest. 

2Ac Qeuc dr 
A,&--- = 0, 

y -1  IP r u - c  

the integral being taken along the characteristic and the entropy term being 
omitted for the same reason as in (1). An examination shows that the third term 
above may also be neglected, to the same order of approximation. This leads to 

(2) 
the simple relation 

If we use a suffix zero to denote the conditions at  some time t = T for which r is 
already sufficiently large (and equal to ro), then we may replace r by ro + co(t - T) 
to a first approximation and rewrite the equation (1) above, with the aid of (S), as 

Since P and Q lie on a P-characteristic, we have 

AU = 2Ac/(y- 1). 
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it is typically found in the theories that the pressure coefficient* Cp, at 
the separation point roughly obeys the relation C,, cc (Tw/Twa)-m, where n 
is between 0.5 and 1, and T,,, is measured on the absolute scale. This 
considerable predicted effect of heat transfer is of great interest, because 
in many practical applications where boundary layer separation at supersonic 
speeds may occur the wall temperature will be much lower than the zero 
heat transfer value. Also, in certain wind tunnel investigations observations 

Shock- generating wedge -=----- -- - - -. --- 

L- 9. 111 , 
(a) Plate a5 originally constructed 

(b) Plate a5 modified w i t h  insulated leading edge portion 

Figure 1. The flat plate on which the test boundary layer was formed. 

are made before the model and flow are in thermal equilibrium, so that 
errors may arise if the effects of heat transfer on separation are appreciable. 
Previous experimental work (for example Gadd, Holder & Regan 1954) 
on separation in supersonic flow has all been concerned with the insulated 
condition. Hence it was decided to investigate experimentally cases of 
laminar and turbulent separation with the wall heated or cooled. 

2 ( p - - p , ) / ~ M ~ p ,  where p = pressure, p ,  = free- 
stream pressure, y = ratio of specific heats, and M ,  == free-stream Mach number, 

*The pressure coefficient C, 
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may at first diminish on account of the factors r-4 and r-l which occur in 
the right-hand sides of the formulae given above; only if k is sufficiently large 
will (du/dr)) increase continuously with time. In  both cases, however, it is clear 
that the denominator vanishes eventually, for any y > - 1, so that an infinite 
gradient of velocity must appear on the characteristic. For spherically sym- 
metrical motion, for example, it  will occur not later than time t given by 

t - T = (ro/co) [exp [2co/rok(y + l)] - 11. 

Hence, for any plane, cylindrically or spherically symmetrical gas motion the 
continuity must eventually break down along a characteristic on which the 
motion is compressive.* 

when y = - 1, there is no shock wave. For plane waves (du/dr)p is constant in 
this case. This is in agreement with the known result that, for y = - 1, plane waves 
propagate without change of form. 

4. Comparison with some computations 

tions for a gas initially a t  rest with a density distribution given by 
Fox &, Ralston (1957) and Roberts (1957) have carried out numerical calcula- 

P = pO[l +P ~ X P  ( - 4 r ~ 1 ,  

where r’ = r /a  (a  is some characteristic length, po the undisturbed density of air) 
andp = 2 (Fox &, Ralston, following Unwin, 1941), orp = 5 (Roberts). They did 
not find any evidence of a breakdown of continuity. The disturbances represented 
by these distributions quickly become small everywhere, and when the theory of 
the present paper is applied directly to them, with T = 0, it  is found that a shock 
wave should begin at  t‘ = 0.7 and t’ = 0.3, where t’ = cotla, corresponding to 
T‘ = 1.2 and r‘  = 0.9, respectively. 

In  discussing this difference between the theoretical conclusions and those 
found by calculation, it may be said that, for spherical waves, the shock intensities 
can be so small that they may be masked by the errors involved in numerical 
calculations when the partial differential equations are replaced by finite dif- 
ference calculations. The tendency to form extremely weak shock-waves in 
spherical expansions was indicated by Taylor in (1946) and Lighthill showed 
analytically in 1948 that, in the flow resulting from the expansion of a spherical 
piston with Machnumber 1/5, the leading shock wave was of order in strength, 
i.e. ‘of an order of smallness rarely encountered in physical problems ’. When one 
considers this in conjunction with the fact that Roberts’s finite difference system 
introduced an artificial viscosity which would have the effect of smoothing out 
discontinuities (as he himself says), it may be correct to conclude that the 
discrepancy between the conclusions of this paper and the results of the calcula- 
tions which Roberts carried out is more apparent than real; that shock waves of 
the strength likely to occur could not have been detected by the numerical method 
adopted. 

* It may be noted that Burton pointed out in his original paper that the inevitability of 
a discontinuous motion would not apply to flow in dimensions greater than three. 
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Fox & Ralston computed the case p = 2 by means of a finite difference scheme 
for the characteristics and the equations of compatibility. They remark that ‘any 
tendency for the characteristics to converge is quickly dispelled and so there is 
never any sign of the formation of a shock’. As the author (1948) has shown in a 
paper on the formation of shock waves in jets, the initial point of a shock wave 
may be found by constructing characteristics over a field sufficient to allow 
mutual intersections of several neighbouring characteristics of the same family, 
and by extrapolating back to  find the point at which two infinitesimally separated 
characteristics first begin to form the envelope of their family. The point r‘ = 1.2, 
t‘ = 0.7 lies near to the boundary of the region computed by Fox & Ralston, so 
that here again, with a very weak shock, the breakdown could not be expected to 
reveal itself. 

The author therefore believes that the computations so far carried out could 
not have revealed the shock wave which was sought. 
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